Examining contingent discrete change over time with associative latent transition analysis

Brian P. Flaherty Department of Psychology University of Washington bxf4@u.washington.edu

May 15, 2006

Outline
Substantive
questions?

Latent class models

Latent transition model

Associative latent transition model

Empirical illustration - Methods

Empirical illustration - Results

Selected ALTA estimates

Conclusions

Introduction: What sort of questions are we interested in? Latent class model

Latent transition or latent Markov models

Associative latent transition model

Empirical illustration

Conclusions/discussion

 \square

 \square

 \square

 \square

 \square

Substantive ▷ questions?

Phenomena and questions of interest:

Latent class models

Latent transition model

Associative latent transition model

Empirical illustration - Methods

Empirical illustration - Results

Selected ALTA estimates

Conclusions

Substantive questions?

 \square

 \square

Substantive questions?

Phenomena and auestions of \triangleright interest:

Latent class models

Latent transition model

Associative latent transition model

Empirical illustration - Methods

Empirical illustration - Results

Selected ALTA estimates

Conclusions

Focus on unobservable groups or categories in the population.

How does change among discrete states proceed over time? \square

- How well are states measured?
- Is change comparable between two groups (e.g., treatment and control)?
- How are two changing categorical variables associated? \Box

\sim	- - [1.1.1	-
U	ut	IIN	e
_			

Substantive questions?

Latent class

▷ models

Latent class model

Estimation

Fit and model

selection

 $\mathsf{LC} \ \mathsf{results}$

Latent transition model

Associative latent transition model

Empirical illustration

- Methods

Empirical illustration - Results

Selected ALTA estimates

Conclusions

Latent class models

Latent class model

Outline

Substantive questions?

Latent class models

Latent class

▷ model

Estimation

Fit and model selection

LC results

Latent transition model

Associative latent transition model

Empirical illustration

- Methods

Empirical illustration - Results

Selected ALTA estimates

Conclusions

$$P(\boldsymbol{W}) = \sum_{c=1}^{C} \gamma_c \left(\prod_{j=1}^{q} \prod_{k=1}^{r_j} \rho_{jk|c}^{I(w_j=k)} \right)$$

where

 \square

- W is a response pattern;
- γ_c is the proportion of the population in latent class c; $\rho_{jk|c}^{I(w_j=k)}$ is the probability of response k to item j for latent class c.

 \Box $I(\cdot)$ is the indicator function, here used to select the appropriate response probabilities.

I will abbreviate latent class as LC.

Estimation

 \square

 \square

 \square

 \square

Outline Substantive questions?

Latent class models

Latent class model

Estimation Fit and model selection

 $\mathsf{LC} \ \mathsf{results}$

Latent transition model

Associative latent transition model

Empirical illustration - Methods

Empirical illustration

- Results

Selected ALTA estimates

Conclusions

EM algorithm

identification problems/multiple modes of likelihood use many sets of start values to evaluate the problem parameter restrictions to simplify the model \square

 \square

Outli	ne
-------	----

Substantive questions?

Latent class models

Latent class model

Estimation

Fit and model

▷ selection

LC results

Latent transition model

Associative latent transition model

Empirical illustration - Methods

Empirical illustration - Results

Selected ALTA estimates

Conclusions

```
Typically use G^2 or Pearson's X^2.
```

But, fit assessment is difficult due to sparse tables.

- Sparse means a low n relative to the number of cells in the observed data contingency table.
 - Sparseness reduces the expectation of the test statistic.

Typical practice with sparse data:

- Ideally G^2 lower than df
- Interpretable solution

Model comparisons (i.e., nested comparisons) perform better than absolute fit tests with sparse data

LC results

Outline Substantive questions?	IC (proportion)		ability of a Yes	•
Latent class models	LC (proportion)	Lvertry	Past 30 day	
Latent class model	LC 1 (.45)	0.0	0.01	0.03^{1}
Estimation Fit and model	LC 2 (.38)	1.0^{2}	0.28	0.03^{1}
selection ▷ LC results	LC 3 (.17)	1.0 ²	0.99	0.97
Latent transition model				
Associative latent transition model				
Empirical illustration <u>- Methods</u>				
Empirical illustration <u>- Results</u>				
Selected ALTA estimates				
Conclusions				

Substantive questions?

Latent class models

Latent transition Model Latent transition model Diagram of LC approach for two times Diagram of LTA for two times

Associative latent transition model

Empirical illustration

- Methods

Empirical illustration - Results

Selected ALTA estimates

Conclusions

Latent transition model

Latent transition model

Outline

Substantive questions?

Latent class models

Latent transition model Latent transition

▷ model Diagram of LC approach for two times Diagram of LTA for

two times Associative latent

transition model

Empirical illustration - Methods

Empirical illustration - Results

Selected ALTA

estimates

Conclusions

$$P(\mathbf{W}) = \sum_{s_1=1}^{S_1} \dots \sum_{s_T=1}^{S_T} \delta_{s_1} \left(\prod_{j=1}^q \prod_{k=1}^{r_j} \rho_{1jk|s_1}^{I(w_{1j}=k)} \right) \times \prod_{t=2}^T \left(\tau_{s_t|s_{t-1}}^{(t-1)} \prod_{j=1}^q \prod_{k=1}^{r_j} \rho_{tjk|s_t}^{I(w_{tj}=k)} \right).$$

where

 δ_{s_1} is the proportion of the population in LC s_1 at Time 1; $\Box \quad \tau_{s_t|s_{t-1}}^{(t-1)}$ is the transition probability from LC s_{t-1} at Time t-1 to LC s_t at Time t.

Outline Substantive questions? Latent class models Latent transition	Interested in two Could fit a four		•	
modelLatent transitionmodelDiagram of LCapproach for two▷ timesDiagram of LTA fortwo timesAssociative latenttransition model	LC 1 LC 1	LC 1 LC 2	LC 2 LC 1	LC 2 LC 2
Empirical illustration - Methods Empirical illustration - Results Selected ALTA estimates Conclusions				

Outline Instead, one can model the starting point and then change Substantive between time points. questions? Time 2 Latent class models Latent transition model Time 1 LC 1 LC 2 Latent transition Time 1 model Diagram of LC approach for two times LC1LC1Diagram of LTA \triangleright for two times Associative latent transition model LC 2 LC 2 Empirical illustration - Methods Empirical illustration - Results Transition probabilities are row conditional. Selected ALTA estimates Conclusions Same number of estimates in these two approaches, hence reparameterization.

Substantive questions?

Latent class models

Latent transition model

Associative latent transition model Associative latent transition analysis ALTA continued

ALTA continued

Empirical illustration - Methods

Empirical illustration

- Results

Selected ALTA estimates

Conclusions

Associative latent transition model

Associative latent transition analysis

Outline

Substantive questions?

Latent class models

Latent transition model

Associative latent transition model

Associative latent ▷ transition analysis

transition analysis

ALTA continued

ALTA continued

Empirical illustration - Methods

Empirical illustration

- Results

Selected ALTA estimates

Conclusions

$$P(\mathbf{W}) = \sum_{c_1=1}^{C_1} \sum_{d_1=1}^{D_1} \dots \sum_{c_T=1}^{C_T} \sum_{d_T=1}^{D_T} \alpha_{c_1} \beta_{d_1|c_1} \left(\prod_{j=1}^q \prod_{k=1}^{r_j} \rho_{1jk|c_1d_1}^{I(w_{1j}=k)} \right) \times \prod_{t=2}^T \left(\epsilon_{c_t|c_{t-1}d_{t-1}}^{(t-1)} \eta_{d_t|c_{t-1}c_td_{t-1}}^{(t-1)} \prod_{j=1}^q \prod_{k=1}^{r_j} \rho_{tjk|c_td_t}^{I(w_{tj}=k)} \right)$$

where

 α_{c_1} is the probability of membership in X LC c_1 at Time 1; $\beta_{d_1|c_1}$ is the probability of membership in Y LC d_1 given membership in X LC c_1 at Time 1;

ALTA continued

Outline

Substantive questions?

Latent class models

Latent transition model

Associative latent transition model Associative latent transition analysis > ALTA continued ALTA continued

Empirical illustration - Methods

Empirical illustration

- Results

Selected ALTA estimates

Conclusions

$$P(\mathbf{W}) = \sum_{c_1=1}^{C_1} \sum_{d_1=1}^{D_1} \dots \sum_{c_T=1}^{C_T} \sum_{d_T=1}^{D_T} \alpha_{c_1} \beta_{d_1|c_1} \left(\prod_{j=1}^q \prod_{k=1}^{r_j} \rho_{1jk|c_1d_1}^{I(w_{1j}=k)} \right) \times \prod_{t=2}^T \left(\epsilon_{c_t|c_{t-1}d_{t-1}}^{(t-1)} \eta_{d_t|c_{t-1}c_td_{t-1}}^{(t-1)} \prod_{j=1}^q \prod_{k=1}^{r_j} \rho_{tjk|c_td_t}^{I(w_{tj}=k)} \right)$$

where

 $\epsilon_{c_t|c_{t-1}d_{t-1}}^{(t-1)}$ is the probability of X LC membership c_t at Time t conditional on membership in both X LC c_{t-1} and Y LC d_{t-1} at Time t-1;

ALTA continued

Outline

Substantive questions?

Latent class models

Latent transition model

Associative latent transition model Associative latent transition analysis

ALTA continued

 \triangleright ALTA continued

Empirical illustration - Methods

Empirical illustration - Results

Selected ALTA estimates

Conclusions

$$P(\mathbf{W}) = \sum_{c_1=1}^{C_1} \sum_{d_1=1}^{D_1} \dots \sum_{c_T=1}^{C_T} \sum_{d_T=1}^{D_T} \alpha_{c_1} \beta_{d_1|c_1} \left(\prod_{j=1}^q \prod_{k=1}^{r_j} \rho_{1jk|c_1d_1}^{I(w_{1j}=k)} \right) \times \prod_{t=2}^T \left(\epsilon_{c_t|c_{t-1}d_{t-1}}^{(t-1)} \eta_{d_t|c_{t-1}c_td_{t-1}}^{(t-1)} \prod_{j=1}^q \prod_{k=1}^{r_j} \rho_{tjk|c_td_t}^{I(w_{tj}=k)} \right)$$

where

 $\eta_{d_t|c_{t-1}c_td_{t-1}}^{(t-1)}$ is the probability of Y LC membership d_t at Time t conditional on membership in X LC's c_{t-1} and c_t at Times t-1 and t, respectively, and Y LC membership d_{t-1} at Time t-1.

Substantive questions?

Latent class models

Latent transition model

Associative latent transition model

Empirical illustration -

 \triangleright Methods

Data

ltems

Analyses

Empirical illustration

- Results

Selected ALTA

estimates

Conclusions

Empirical illustration - Methods

Data

Outline

Substantive questions?

Latent class models

Latent transition model

Associative latent transition model

Empirical illustration

- Methods

Data Data

Items

Analyses

Empirical illustration

- Results

Selected ALTA estimates

Conclusions

National Longitudinal Study of Adolescent Health (Add Health);

U.S. students in grades 7 through 12;

 \Box 6,504 initially surveyed in 1994;

 \Box 4,834 re-interviewed in 1995.

Analyses use data from all 6,504 respondents.

 \square

Items

Outline Substantive questions?	Three
Latent class models Latent transition model	р р
Associative latent transition model	
Empirical illustration <u>- Methods</u>	C
Data ▷ Items	Three
Analyses Empirical illustration	
- Results Selected ALTA	0
estimates	
Conclusions	
	11

Three Yes/No items measuring recent tobacco use:

Have you ever tried cigarette smoking, even just 1 or 2 puffs?

Have you smoked cigarettes on any of the last 30 days? Have you ever smoked cigarettes regularly (at least 1 cigarette every day for 30 days)?

hree Yes/No items measuring recent alcohol use:

Have you had a drink of beer, wine, or liquor—not just a sip or a taste of someone else's drink—more than 2 or 3 times in your life?

Have you drank alcohol in the past 12 months?

Have you ever been drunk or drank 5 or more drinks in a row in the past 12 months?

Analyses

 \square

 \square

Outline

Substantive questions?

Latent class models

Latent transition model

Associative latent transition model

Empirical illustration - Methods

Data

Items

Analyses

Empirical illustration - Results

- Results

Selected ALTA estimates

Conclusions

Fit single LTA models first:

- Choose a number of LC's;
- Examine measurement structure.
- □ Fit multiple sets of start values to base ALTA model to assess identification (i.e., multi-modality).
 - Fit ALTA model corresponding to various patterns of association between tobacco and alcohol classes.

Substantive questions?

Latent class models

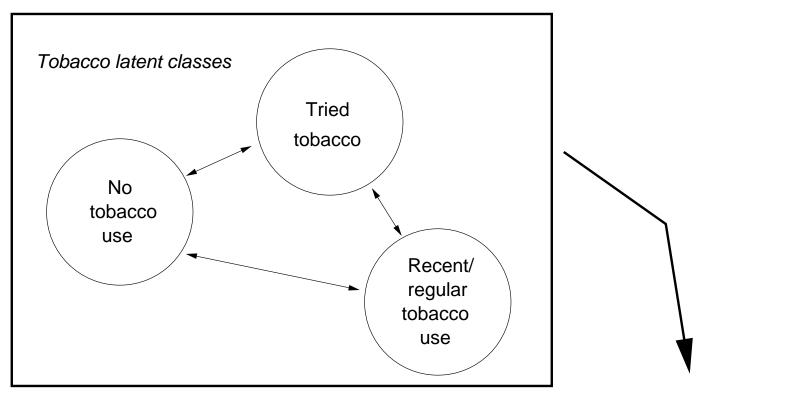
Latent transition model

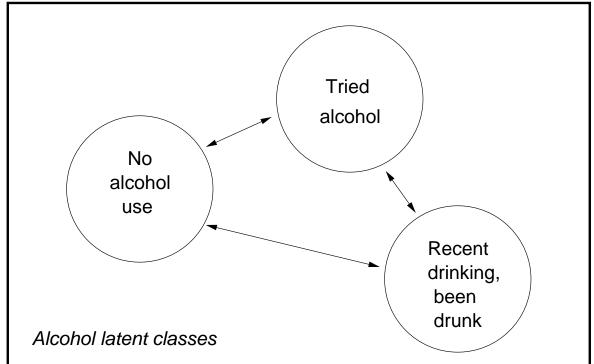
Associative latent transition model

Empirical illustration - Methods

> Empirical illustration -

Results
Measurement
estimates


Identification assessment Identification assessment


Selected ALTA estimates

Conclusions

Empirical illustration - Results

Outline Substantive questions? Latent class models	Tobacco response LC (proportion)	Prob	es ability of a Ye Past 30 day	•
Latent transition model Associative latent transition model Empirical illustration - Methods	LC 1 LC 2 LC 3	0.0 1.0 ² 1.0 ²	0.01 0.28 0.99	0.03 ¹ 0.03 ¹ 0.97
Empirical illustration <u>- Results</u> Measurement C estimates Identification	Alcohol response probabilities Probability of a Yes response LC (proportion) Past 12 month Drunk/Binge			
assessment Identification assessment Selected ALTA estimates Conclusions	LC 1 LC 2 LC 3	0.0 1.0 ⁴ 1.0 ⁴	0.00 0.67 1.00	0.0 ³ 0.0 ³ 1.0

Substantive questions?

Latent class models

Latent transition model

Associative latent transition model

Empirical illustration - Methods

Empirical illustration - Results

Measurement

estimates

Identification ▷ assessment Identification assessment

Selected ALTA estimates

Conclusions

The model of tobacco and alcohol:

- □ 88 parameter estimates
- 8 are conditional response probabilities (using the same parameter restrictions as earlier)

Ran 1000 sets of random start values.

Outline
Substantive

questions?

Latent	class models
Latent	transition
model	

Fourteen different G^2 values (to 1 decimal place) and 2 NaNvalues (not a number, e.g., 0/0).

Latent transition	G^2 value	Number of runs
model	1335.8	356
Associative latent transition model	5538.2	77
Empirical illustration - Methods	5538.3	67
Empirical illustration	5737.1	86
- Results	6412.4	84
Measurement estimates	6491.4	73
	9019.5	101
Identification assessment	9845.0	39
Identification ▷ assessment	10586.7	27
Selected ALTA	10600.8	3
estimates	10600.9	25
Conclusions	13598.1	15
	14189.0	23
	14433.1	22

Substantive questions?

Latent class models

Latent transition model

Associative latent transition model

Empirical illustration - Methods

Empirical illustration - Results

Selected ALTA \triangleright estimates Time 1 X LC variable Time 1 Y conditional on X Time 2 X's Time 2 Y's An η comparison Constrained T2 P(drunk) Moving to less use Conclusions

Selected ALTA estimates

Outline Substantive	Unconditional tobacco class membership ($lpha$'s)			
questions?		No tobacco	Try tobacco	Regular tobacco
Latent class models	Time 1	0.45	0.38	0.17
model	Time 2	0.43	0.24	0.33
Associative latent transition model				
Empirical illustration - Methods				
Empirical illustration - Results				
Selected ALTA estimates Time 1 X LC \triangleright variable Time 1 Y conditional on X				
Time 2 X 's				
Time 2 Y's An η comparison Constrained T2 P(drunk) Moving to less use				
Conclusions				

Outline Substantive	Alcohol class c	onditiona	l on tobacco d	class (eta 's)
questions?	Time 1	Tim	e 1 Alcohol c	ass
Latent class models Latent transition	Tobacco LC	No alc	Try alcohol	Drunk
model	No tobacco	0.71	0.19	0.10
Associative latent transition model	Try tobacco	0.30	0.33	0.37
Empirical illustration <u>- Methods</u>	Reg tobacco	0.11	0.16	0.73
Empirical illustration - Results				
Selected ALTA estimates Time 1 X LC variable Time 1 Y \triangleright conditional on X				
Time 2 X's Time 2 Y's				
An η comparison Constrained T2 P(drunk)				
Moving to less use Conclusions				

Time 2 X's

Outline Substantive questions?		ople likely to b ver smoked at	Ŭ	cco classes at Time 2 if e^{is}
Latent class models	Time 1	т	ime 2 Tobacco	o class
Latent transition model	Alcohol LC	No tobacco	Try tobacco	Regular tobacco
Associative latent transition model	No alcohol	0.85	0.13	0.02
Empirical illustration - Methods	Try alcohol	0.78	0.20	0.02
Empirical illustration - Results	Drunk	0.67	0.24	0.09
Selected ALTA estimates Time 1 X LC variable Time 1 Y conditional on X				
$\triangleright Time 2 X's$ Time 2 Y's				
An η comparison Constrained T2 P(drunk) Moving to less use				
Conclusions				

Time 2 Y's

Outline Substantive questions?	What happens to people (Selected η 's)	e starting in N	o tobacco and	d No alcohol?
Latent class models		ר	Time 2 LC	
model	Time 2 Tobacco class	No alcohol	Try alcohol	Drunk
Associative latent transition model	No tobacco	0.87	0.09	0.04
Empirical illustration - Methods	Try tobacco	0.65	0.15	0.20
Empirical illustration - Results	Reg tobacco	0.44	0.06	0.50
Selected ALTA estimates Time 1 X LC variable Time 1 Y conditional on X				
Time 2 X 's				
Fime 2 Y's An η comparison Constrained T2 P(drunk) Moving to less use				
Conclusions				

An η comparison

Outline Substantive questions? Latent class models	combinations of tob	acco use clas	alcohol at Time 1, which ses are associated with the e Drunk class at Time 2?
Latent transition model	Tobacco classes	P(Drunk)	
Associative latent transition model	No tob, No tob	0.04	
Empirical illustration	No tob, Try tob	0.20	
- Methods Empirical illustration	No tob, Reg tob	0.50	
- Results	Try tob, No tob	0.08	
Selected ALTA estimates	Try tob, Try tob	0.23	
Time 1 X LC variable	Try tob, Reg tob	0.55	
Time 1 Y conditional on X	Reg tob, No tob	0.11	
Time 2 X 's Time 2 Y 's	Reg tob, Try tob	0.19	
\triangleright An η comparison Constrained T2 P(drunk)	Reg tob, Reg tob	0.41	
Moving to less use			
Conclusions			

\sim	ut	13.	-	~
\mathbf{U}	uι	ш		e

Substantive questions?

Latent class models

Latent transition model

Associative latent transition model

Empirical illustration - Methods

Empirical illustration - Results

Selected ALTA estimates Time 1 X LC variable Time 1 Y conditional on X Time 2 X's Time 2 Y's An η comparison Constrained T2 \triangleright P(drunk) Moving to less use Conclusions Constrained model G^2 is 1347.9 with 4013 degrees of freedom. G^2 difference is 12.1 with 6 degrees of freedom (4013-4007). The p-value of this nested model comparison is 0.0598. The constrained $\hat{\eta}$'s are: <u>Time 2 Tobacco class P(Drunk)</u> No tob 0.05 Try tob 0.21

Reg tob0.46

Moving to less use

Substantive questions?

Latent class models

Latent transition model

Associative latent transition model

Empirical illustration - Methods

Empirical illustration - Results

Selected ALTA estimates Time 1 X LC variable Time 1 Y conditional on X Time 2 X's Time 2 Y's An η comparison Constrained T2 P(drunk) Moving to less \triangleright use

Conclusions

What about transitions out of the Drunk/binge LC?

Do the rates that people change from Drunk/binge to No alcohol depend on a reducing to No tobacco use?

Unconstrained estimates:

Constrained estimate is 0.29.

```
Constrained model G^2 = 1343.36.
```

```
\Delta G^2 = 7.55 on 1 degree of freedom, p = 0.006.
```

Substantive questions?

Latent class models

Latent transition model

Associative latent transition model

Empirical illustration - Methods

Empirical illustration - Results

Selected ALTA estimates

▷ Conclusions

Conclusions

Limitations

Conclusions

Conclusions

 \square

 \square

 \square

Outline Substantive questions? Latent class models Latent transition model

Associative latent transition model

Empirical illustration - Methods

Empirical illustration - Results

Selected ALTA estimates

Conclusions

 \triangleright Conclusions

Limitations

Parameterization to examine contingent relations between two dynamic latent class variables.

The goal of the parameterization is to make contingent change explicit.

Can flexibly test simple and complex hypotheses with parameter restrictions.

Limitations

 \square

 \square

Outline

Substantive questions?

Latent class models

Latent transition model

Associative latent transition model

Empirical illustration - Methods

Empirical illustration - Results

Selected ALTA estimates

Conclusions

Conclusions

 \triangleright Limitations

 \Box Big models, a lot of parameters;

Shares difficulties in assessing fit with other large latent class models;

□ Current implementation doesn't provide standard errors.

Not yet clear what the bounds are of this model:

- \Box How many times?
- □ How many classes?
 - How many items?